Analisi matematica/Serie

Da testwiki.
Vai alla navigazione Vai alla ricerca

Template:Analisi matematica a) Data una serie di funzioni:

 f1(x)+f2(x)+....+fn(x)+...

si dice che essa è uniformemente convergente in un intervallo (a,b), quando, dato un  ϵ arbitrario, esiste un indice n¯ tale che, essendo  n>n¯ e qualunque sia x in (a,b) si ha:

 |Rn(x)|ϵ.

Se in un intervallo (a,b) si ha:  |fn(x)|αn, essendo αn una serie di numeri positivi convergente, la serie fn(x) è uniformemente convergente in (a,b).

b) Una serie di funzioni continue uniformemente convergenti in un intervallo (a,b) è una funzione continua in (a,b).

c) Una serie di potenze:

 a0+a1x+a2x2+...+anxn+...

se converge per un valore x= x0, converge per ogni valore di x tale che:

d) Una serie di potenze converge assolutamente ed uniformemente in ogni intervallo interno al suo intervallo di convergenza.

e) Le serie:

n=1xn,n=1xnn,n=1xnn2.

hanno per intervallo di convergenza l'intervallo (-1,+1). Negli estremi di questo intervallo la prima non converge perché il suo termine generale non tende a 0; la seconda converge per x=-1, diverge per x=1', la terza converge assolutamente tanto per x=1, quanto per x=-1.

Template:Avanzamento