File:Gate sequence (time).pdf

Da testwiki.
Vai alla navigazione Vai alla ricerca
File originale (1 162 × 875 pixel, dimensione del file: 4 KB, tipo MIME: application/pdf)

Questo file proviene da Wikimedia Commons e può essere utilizzato da altri progetti. Di seguito viene mostrata la descrizione presente nella pagina di descrizione del file.

Descrizione
English: Gate sequence in time.
Italiano: Sequenza porta nel tempo.
Data
Fonte Opera propria
Autore Luca Ghio
Licenza
(Riusare questo file)
Public domain Io, detentore del copyright su quest'opera, la rilascio nel pubblico dominio. Questa norma si applica in tutto il mondo.
In alcuni paesi questo potrebbe non essere legalmente possibile. In tal caso:
Garantisco a chiunque il diritto di utilizzare quest'opera per qualsiasi scopo, senza alcuna condizione, a meno che tali condizioni siano richieste dalla legge.
gnuplot source
InfoField
click to expand
N=11;
n=[0:N-1];
x=ones(1,N);
r1=0.8;
r2=0.5;
r3=0.2;
h1=r1.^n;
h2=r2.^n;
h3=r3.^n;
figure
set (gca,'FontSize',14)
stem(n,x)
xlabel('n')
ylabel('x(n)')
axis([0 10 0 2])
grid on
figure
set (gca,'FontSize',14)
stem(n,h1)
xlabel('n')
ylabel('h_1(n)')
axis([0 10 0 1])
grid on
figure
set (gca,'FontSize',14)
stem(n,h2)
xlabel('n')
ylabel('h_2(n)')
axis([0 10 0 1])
grid on
figure
set (gca,'FontSize',14)
stem(n,h3)
xlabel('n')
ylabel('h_3(n)')
axis([0 10 0 1])
grid on

N=11;
n=[0:N-1];
x=ones(1,N);
r1=0.8;
r2=0.5;
r3=0.2;
k1=(1-r1)/(1-r1^N);
k2=(1-r2)/(1-r2^N);
k3=(1-r3)/(1-r3^N);
h1=k1*r1.^n;
h2=k2*r2.^n;
h3=k3*r3.^n;
%  figure
%  set (gca,'FontSize',14)
%  stem(n,x)
%  xlabel('n')
%  ylabel('x(n)')
%  axis([0 10 0 2])
%  grid on
%  figure
%  set (gca,'FontSize',14)
%  stem(n,h1)
%  xlabel('n')
%  ylabel('h_1(n)')
%  axis([0 10 0 1])
%  grid on
%  figure
%  set (gca,'FontSize',14)
%  stem(n,h2)
%  xlabel('n')
%  ylabel('h_2(n)')
%  axis([0 10 0 1])
%  grid on
%  figure
%  set (gca,'FontSize',14)
%  stem(n,h3)
%  xlabel('n')
%  ylabel('h_3(n)')
%  axis([0 10 0 1])
%  grid on

f=linspace(-0.5,0.5,1000);
H1=k1*(1-(r1*exp(-j*2*pi*f)).^N)./(1-r1*exp(-j*2*pi*f));
H2=k2*(1-(r2*exp(-j*2*pi*f)).^N)./(1-r2*exp(-j*2*pi*f));
H3=k3*(1-(r3*exp(-j*2*pi*f)).^N)./(1-r3*exp(-j*2*pi*f));
figure
set (gca,'FontSize',14)
plot(f,abs(H1))
hold on
plot(f,abs(H2),'r')
plot(f,abs(H3),'g')
xlabel('f')
ylabel('|H_i(e^{j\omega})|')
axis([-0.5 0.5 0 1.5])
grid on
legend('|H_1(e^{j\omega})|','|H_2(e^{j\omega})|', '|H_3(e^{j\omega})|')

N = 11;
X = (sin(pi*f*N) ./ sin(pi*f)) .* exp(-j*pi*f*(N-1));
figure
set (gca,'FontSize',14)
plot(f,abs(X))
xlabel('f')
ylabel('|X(e^{j\omega})|')
axis([-0.5 0.5 0 11])
grid on

Y1 = X .* H1;
Y2 = X .* H2;
Y3 = X .* H3;
figure
set (gca,'FontSize',14)
plot(f,abs(Y1))
hold on
plot(f,abs(Y2), 'r')
plot(f,abs(Y3), 'g')
xlabel('f')
ylabel('|Y_i(e^{j\omega})|')
axis([-0.5 0.5 0 11])
grid on
legend('|Y_1(e^{j\omega})|','|Y_2(e^{j\omega})|', '|Y_3(e^{j\omega})|')

N=11;
n=[0:N-1];
x=ones(1,N);
r1=0.8;
r2=0.5;
r3=0.2;
k1=(1-r1)/(1-r1^N);
k2=(1-r2)/(1-r2^N);
k3=(1-r3)/(1-r3^N);
h1=k1*r1.^n;
h2=k2*r2.^n;
h3=k3*r3.^n;
y1=conv(x,h1);
y2=conv(x,h2);
y3=conv(x,h3);
n=[0:length(y1)-1];
figure
set (gca,'FontSize',14)
stem(n,y1)
xlabel('n')
ylabel('y_1(n)')
axis([0 20 0 1.5])
grid on
figure
set (gca,'FontSize',14)
stem(n,y2)
xlabel('n')
ylabel('y_2(n)')
axis([0 20 0 1.5])
grid on
figure
set (gca,'FontSize',14)
stem(n,y3)
xlabel('n')
ylabel('y_3(n)')
axis([0 20 0 1.5])
grid on

Didascalie

Aggiungi una brevissima spiegazione di ciò che questo file rappresenta

Elementi ritratti in questo file

raffigura

4 257 byte

875 pixel

1 162 pixel

application/pdf

b942a53c41511d5abd9c13aee26fe84ed60ec9fb

Cronologia del file

Fare clic su un gruppo data/ora per vedere il file come si presentava nel momento indicato.

Data/OraMiniaturaDimensioniUtenteCommento
attuale13:46, 23 set 2017Miniatura della versione delle 13:46, 23 set 20171 162 × 875 (4 KB)wikimediacommons>Luca Ghio{{Information |Description= {{en|Gate sequence <math>x \left( n \right) = u \left( n \right) - u \left( n - N \right)</math> in time.}} {{it|Sequenza porta <math>x \left( n \right) = u \left( n \right) - u \left( n - N \right)</math> nel tempo.}} |Sour...